Religiosity Predicts Evidentiary Standards

Article in Social Psychological and Personality Science - September 2019
DOI: 10.1177/1948550619869613

5 authors, including:

- Emilio Lobato
 University of California, Merced
 16 PUBLICATIONS 208 CITATIONS
 SEE PROFILE

- Shadab Tabatabaeian
 University of California, Merced
 2 PUBLICATIONS 0 CITATIONS
 SEE PROFILE

- Morgan Fleming
 University of California, Merced
 2 PUBLICATIONS 10 CITATIONS
 SEE PROFILE

- Colin Holbrook
 University of California, Merced
 58 PUBLICATIONS 972 CITATIONS
 SEE PROFILE

All content following this page was uploaded by Emilio Lobato on 15 September 2019.
Religiosity Predicts Evidentiary Standards

Emilio J. C. Lobato1, Shadab Tabatabaeian1, Morgan Fleming1, Sven Sulzmann2, and Colin Holbrook1

Abstract
Research shows that religious and nonreligious individuals have different standards of evidence for religious and scientific claims. Here, in a preregistered replication and extension of McPhetres and Zuckerman, participants read about an effect attributed to either a scientific or religious cause, then assessed how much evidence, in the form of successful replications, would be needed to confirm or to reject the causal claim. As previously observed, religious individuals exhibited a bias for believing religious claims relative to scientific claims, while nonreligious individuals were consistent in their standards of evidence across domains. In a novel extension examining standards of evidence with respect to failures of replication, we found that religious individuals were consistent across domains, whereas nonreligious individuals indicated a lower threshold for rejecting religious claims relative to scientific claims. These findings indicate asymmetries in the evaluation of claims based on the presence versus absence of supportive evidence.

Keywords
religion, science, evidence, decision-making

Multiple lines of research find that religious believers and nonbelievers are likely to differ in their cognitive dispositions and reasoning abilities. For example, avowed believers, in comparison to nonreligious individuals, evince stronger tendencies to attribute agency and intentionality to natural processes (Crespi & Badcock, 2008) and show poorer abilities to understand nature in mechanistic terms (Baron-Cohen, 2002; Lindeman & Lipsanen, 2016). Similarly, strength of religious belief has been found to predict the likelihood of a person discounting base-rate information in favor of intuitions in reasoning problems (Pennycook, Cheyne, Barr, Koehler, & Fugelsang, 2014). Additionally, religious believers are less likely than nonbelievers to be able to consistently distinguish between good reasons and bad reasons for beliefs about the existence of God (Cardwell & Halberstadt, 2019).

Several researchers have suggested that, in general, religious individuals may be less inclined to evaluate information critically and may be more reliant than nonbelievers on an intuitive cognitive style and the use of cognitive heuristics than on a reflective, analytical cognitive style (Browne, Pennycook, Goodwin, & McHenry, 2014; Gervais & Norenzayan, 2012; Pennycook et al., 2014; Pennycook, Ross, Koehler, & Fugelsang, 2016; Shenhav, Rand, & Greene, 2012). However, it should be noted that studies using the Cognitive Reflection Test (Frederick, 2005) as a measure of participants’ dispositions toward analytical thinking have not consistently replicated the association between religiosity and analytical cognitive style (see Finley, Tang, & Schmeichel, 2015; Sanchez, Sundermeier, Gray, & Calin-Jageman, 2017). Nevertheless, research generally converges on the finding that religious believers and nonbelievers differ in their cognitive dispositions.

Such differences in the cognitive dispositions of religious believers and nonbelievers may help explain why believers are generally less scientifically literate (Sherkat, 2011) and identify less with science (Rios, Cheng, Totton, & Shariff, 2015) than nonbelievers, despite the tendency for many scientists and members of the general public to believe there is no conflict between science and religion (Ecklund, Johnson, Scheitle, Matthews, & Lewis, 2016; Scheitle & Ecklund, 2017). The apparent disconnect between religiosity and scientific literacy or identification with science may be driven by differences in how religious and nonreligious individuals set evidentiary standards for claims about the world (McPhetres & Zuckerman, 2017).

Beyond differences in cognitive style, religious and scientific claims also inherently differ in their falsifiability. Scientific claims are evaluated in terms of their concordance with empirical observations (Popper, 2005) and scientists...
confronted with inconsistent data will eventually develop new theories (Kuhn, 1970). By contrast, religious beliefs that make factual claims appear equipped with epistemological escape clauses that reframe apparent contradictions in ways that preserve belief (Boudry & Braeckman, 2012; Friesen, Campbell, & Kay, 2015; Van Leeuwen, 2017). Differences in the cognitive and reasoning abilities of religious believers and nonbelievers, as well as differences in the characteristics of religious and scientific claims, reveal a need to explore how people set evidentiary standards for believing a given claim. Exploring factors that influence how people evaluate religious and scientific claims in light of empirical evidence is important for contributing to an understanding of religious and nonreligious beliefs as well as scientific literacy.

McPhetres and Zuckerman (2017) designed a novel method used across three studies to assess whether religious people differ regarding the amount of supporting evidence needed to believe either religious or scientific claims. In Study 1, participants read a brief vignette about a group of people trying to cure ill people using either a new medicine (i.e., a scientific method) or prayer (i.e., a religious approach). Participants read that this group has already tested their approach on one ill person who was subsequently cured. Afterward, participants were asked how many additional people would need to be cured before they could confirm the approach being used was responsible for the effect. McPhetres and Zuckerman found that, relative to nonbelievers, religious participants required fewer instances in which prayer coincided with recovery to confirm the efficacy of prayer. Religious participants also required less evidence to confirm a claim about prayer healing relative to a scientific claim about medication efficacy. By contrast, the standard of evidence required to believe scientific claims was not significantly different between religious and nonreligious participants. McPhetres and Zuckerman repeated this design to assess how people evaluated evidence for religious and scientific claims for predicting the outcome of coin tosses and for identifying a guilty suspect in a criminal investigation, finding similar patterns of results for both subsequent studies. These results are suggestive that religious believers are more credulous toward religious claims but not more doubtful of scientific claims, but these results are limited to evidence supporting a claim.

In a preregistered replication study (http://osf.io/evhzu), we aim to extend the results of the first study reported in McPhetres and Zuckerman (2017) by exploring how religious and nonreligious individuals treat disconfirming as well as supporting evidence. Disconfirming or contradictory evidence plays a central role in scientific discovery and advancement, driving the refinement or overturning of accepted scientific theories (Kuhn, 1970; Popper, 2005). In addition, in daily life, people regularly and immediately update their beliefs about mundane matters in response to contradictory evidence. By comparison, empirical religious claims do not typically get updated by believers in response to contradictory evidence (Van Leeuwen, 2017).

If there were a general bias by religious individuals to believe religious claims, we would expect results consistent with McPhetres and Zuckerman (2017) regarding supporting evidence. Moreover, we would also expect religious individuals to require a greater number of failed replications before discounting a religious claim relative to a scientific claim. As such, we hypothesized that religious individuals would require fewer successful replications to be certain of a religious claim than for being certain of a scientific claim. We further hypothesized that religious individuals would need more failed replications before discounting a religious claim than would be needed to discount a scientific claim.

Method

Participants

To account for possible overestimations of effect sizes in the original study, we set a target sample size per cell of 200% the sample size reported by McPhetres and Zuckerman. We initially recruited 847 participants through Amazon’s Mechanical Turk, in exchange for US$0.60 per participant, although 78 were never finished, resulting in an initial sample of 769. Because of recent concerns that Mechanical Turk participants may be using scripts or bots to complete studies automatically (Dreyfuss, 2018), we preregistered exclusionary criteria to filter out data of questionable quality. Of the initial 769 participant data sets collected using these criteria, we further screened out data sets with missing responses, multiple data sets originated from the same Internet Protocol address, and data sets that failed attention check items. Our final sample included 703 participants ($M_{age} = 38.8$ years, $SD_{age} = 11.6$ years, male = 378, female = 325). There were 396 participants who reported being nonreligious and 307 who reported being religious.

Materials

We adapted vignettes created by McPhetres and Zuckerman for our replication. Participants were randomly assigned to read one of the four vignettes of a group of people trying to cure an illness. In the “science” domain condition, participants read about a group of scientists testing a medicine to see if it will treat an illness. In the “religion” domain condition, participants read about a group of people praying to God to see if it will treat an illness. In both conditions, participants are told that the group has tested the technique on one person who was cured. Then, participants are randomly assigned to respond to a question asking about how much evidence it would take before participants could be certain the medication or prayer did or did not work. In the “successful replication” condition, participants were asked how many additional people would need to be cured before they could be certain of a religious claim than for being certain of a scientific claim. As such, we hypothesized that religious individuals would need more failed replications before discounting a religious claim than would be needed to discount a scientific claim.
need to remain ill before they could be certain the medication or prayer does not cure the illness.

Participants also responded to a 6-item religiosity measure used in McPhetres and Zuckerman’s original studies and adapted from previous research on religiosity (α = .97; Cohen, Shariff, & Hill, 2008). Participants rated how much they agreed or disagreed with statements such as “My faith or religion is an important part of my identity” on a 7-point Likert-type scale (1 = strongly disagree, 7 = strongly agree). In addition, participants responded to individual difference measures to explore possible moderation of evidentiary standards for confirming or rejecting a scientific or religious claim. These exploratory analyses are included in the Supplemental Online Material (SOM). The individual difference measures included (a) the Credibility of Science Scale (Hartman, Dieckmann, Sprenger, Stastny, & DeMarree, 2017), (b) a modified Political Issues Index (Dodd et al., 2012; Holbrook, Lopez-Rodriguez, & Gomez, 2018), (c) the Conspiracy Mentality Questionnaire (Bruder, Haffke, Neave, Nouripanah, & Imhoff, 2013), and (d) a modified Inclusion of Other in Self Scale (Holbrook et al., 2018).

Procedure

The design and procedure of this study were adapted from Study 1 reported by McPhetres and Zuckerman (2017). Our study employed a 2 (domain: science, religion) × 2 (evidence type: successful replication, failed replication) × 2 (participant religiosity: religious, nonreligious) between-subjects design in which participants were randomly assigned to read a scenario describing a group of people curing an individual with either a scientific method (i.e., medicine) or a religious method (i.e., prayer; see SOM). After reading through the vignette, participants were asked to respond to one question about either (a) how many successful replications would be needed for them to confirm the proposed causal mechanism or (b) how many failed replications would be needed for them to reject the proposed causal mechanism.

Next, participants responded to (a) a question asking whether they consider themselves to be religious; (b) the 6-item religiosity measure (Cohen et al., 2008); and (c) a demographics form, presented in a fixed order. All of these constitute a direct reproduction of the procedure used by McPhetres and Zuckerman. Following the primary measures of interest, participants then completed the individual difference measures described above for preregistered exploratory analyses (see SOM). Importantly, the effects of religiosity reported in what follows obtain when controlling for covarying individual differences in political orientation and the other trait measures (see SOM for analyses).

Results

To test for differences in evidentiary standards, we conducted a 2 (domain: science, religion) × 2 (evidence type: successful replication, failed replication) × 2 (religiosity: religious, nonreligious) between-subjects analysis of variance (see Figure 1). The data were heteroscedastic, therefore we subjected the data to a nonparametric Kruskall–Wallis analysis as well. Except where noted, results were consistent across both parametric and nonparametric analyses (see SOM). Results revealed significant main effects of domain, F(1, 695) = 37.28, p < .001, η² = .05; and evidence type, F(1, 695) = 15.85, p < .001, η² = .02. These main effects were qualified by several significant interaction effects. Results revealed a significant domain by evidence-type two-way interaction, F(1, 695) = 7.71, p = .006, η² = .01; a significant evidence type by religious two-way interaction, F(1, 695) = 27.07, p < .001, η² = .04; and a significant domain by evidence type by religious three-way interaction, F(1, 695) = 15.18, p < .001, η² = .02 (see Table 1 for descriptive statistics). Sensitivity analysis conducted using G*Power (Faul, Erdfelder, Bucher, & Lang, 2009) with power set to .80 and α set to .05 revealed our analysis was powered sufficiently to detect effect sizes as small as f = .10, corresponding roughly to η² = .01.

![Figure 1](image)

Figure 1. Interaction between domain, participant religiosity, and evidence type. Error bars represent 95% confidence interval. Responses were made on a scale from 1 (one) to 12 (100+).

Table 1. Mean (SD) Successful Replications/Failed Replications Requested for Scientific Versus Religious Claims by Religious or Nonreligious Participants.

<table>
<thead>
<tr>
<th>Participants</th>
<th>Successful Replications</th>
<th>Failed Replications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Religious</td>
<td>Science 8.36 (3.83)</td>
<td>Religion 4.53 (3.88)</td>
</tr>
<tr>
<td></td>
<td>n = 61</td>
<td>n = 77</td>
</tr>
<tr>
<td>Nonreligious</td>
<td>Science 9.48 (3.50)</td>
<td>Religion 7.76 (4.35)</td>
</tr>
<tr>
<td></td>
<td>n = 87</td>
<td>n = 124</td>
</tr>
</tbody>
</table>

Treatment of Supportive Evidence by Religious and Nonreligious Individuals

Follow-up pairwise comparisons revealed that our results mostly replicated the findings of McPhetres and Zuckerman...
(2017) regarding the number of successful replications required before confirming scientific and religious claims (see Figure 1). We found that religious participants required fewer successful replications to confirm a religious claim than to confirm a scientific claim, \(p < .001, \eta_p^2 = .04\). Religious participants needed fewer successful replications to confirm a religious claim than nonreligious participants did, \(p < .001, \eta_p^2 = .04\).

Likewise, our results showed that nonreligious participants and religious participants did not significantly differ in the number of successful replications needed before confirming a scientific claim, \(p = .097, \eta_p^2 = .004\). However, whereas McPhetres and Zuckerman did not find that nonreligious participants needed significantly different numbers of successful replications for scientific or religious claims in spite of a trend in that direction, we found that nonreligious participants needed significantly more successful replications to confirm a scientific claim than to confirm a religious claim, \(p = .002, \eta_p^2 = .01\) (nonparametric analyses produced a nonsignificant comparison between these groups, see SOM). This discrepancy between our results and those of McPhetres and Zuckerman (2017) is likely due to differences in power. Overall, participants needed more successful replications to confirm a scientific claim than a religious claim and the most evidence required was by nonreligious participants for a scientific claim. The pattern of results here is nearly identical to the pattern of results reported by McPhetres and Zuckerman, suggesting that when it comes to evaluating supporting evidence for a claim, there appears to be a bias favoring the believability of religious claims among religious individuals. Interestingly, there may be a similar bias toward believing religious claims among nonreligious individuals as well.

Treatment of Disconfirming Evidence by Religious and Nonreligious Individuals

Contrary to our hypothesis, religious participants did not need significantly more failed replications before rejecting a religious claim relative to the number of failed replications required before rejecting a scientific claim, \(p = .589, \eta_p^2 < .001\) (see Figure 1). However, nonreligious participants reported needing significantly fewer failed replications before rejecting a religious claim relative to a scientific claim, \(p < .001, \eta_p^2 = .02\). Furthermore, nonreligious participants and religious participants did not significantly differ in the number of failed replications required before rejecting a scientific claim, \(p = .587, \eta_p^2 < .001\). These results suggest nonreligious individuals may have a bias in favor of rejecting religious claims.

Differences Between Supportive and Disconfirming Evidence Across Domains

We conducted exploratory follow-up pairwise analyses to further examine potential differences by religious and nonreligious participants in their treatment of supportive versus disconfirming evidence. Nonreligious participants needed more successful replications to confirm a scientific claim than failed replications needed to reject a scientific claim, \(p < .001, \eta_p^2 = .03\). This same pattern was true for nonreligious participants’ treatment of a religious claim, \(p < .001, \eta_p^2 = .04\). This suggests that nonreligious participants may just generally be more skeptical, regardless of domain, and find less disconfirming evidence sufficient to reject claims.

By contrast, religious participants needed more successful replications to confirm a scientific claim than failed replications needed to reject a scientific claim (\(p = .009, \eta_p^2 = .01\)), whereas they needed fewer successful replications to confirm a religious claim than failed replications to reject a religious claim, \(p < .001, \eta_p^2 = .02\). The evidentiary standard religious participants held for rejecting either claim fell between the high standard they had for believing a scientific claim and the low standard they had for believing a religious claim.

Discussion

We aimed to replicate and extend research by McPhetres and Zuckerman (2017) by examining how individuals treat supporting and disconfirming evidence relevant to either scientific or religious claims. Our results partially replicated their observation of a bias among religious individuals to believe religious claims. However, our results also suggested a similar bias among nonreligious individuals, albeit to a lesser degree. Importantly, our experiment extends work in this area by asking participants about how many failed replications are required to reject empirical claims. Contrary to our hypothesis, we did not find that religious believers needed more evidence to reject a religious claim than a scientific claim. Instead, our results showed a possible bias by nonreligious individuals to reject religious claims rather than a general bias by religious believers to protect religious claims despite disconfirming evidence. Thus, it appears as though evidence is treated differently for religious claims than for scientific claims. Evidence relevant for a scientific claim was handled similarly by our religious and nonreligious participants. By contrast, evidence relevant for a religious claim was treated by our participants in ways aligned with their identification as religious or nonreligious. Religious participants needed less evidence than nonreligious participants to confirm a religious claim, whereas nonreligious participants needed less evidence than religious participants to reject a religious claim.

Of particular note, our findings revealed that religious and nonreligious individuals generally treat evidence relevant for a scientific claim in a similar fashion. Both religious and nonreligious individuals needed more evidence to confirm a scientific claim than a religious claim, although this effect was smaller for nonreligious individuals. Further, religious and nonreligious individuals were not found to differ in the amount of disconfirming evidence needed to reject a scientific claim. These findings are noteworthy considering research showing that, compared to nonreligious individuals, religious individuals are less scientifically literate (Sherkat, 2011) and identify less with science (Rios et al., 2015). One explanation is that religious and nonreligious individuals differ on their stances...
toward science in relation to their views on religion rather than
in relation to the other group of people. That is to say, relative
to religious individuals’ credulity for religious claims, they
may appear less receptive to scientific claims. Likewise, rela-
tive to nonreligious individuals’ skepticism for religious
claims, they may appear more receptive to scientific claims.

An alternative interpretation of our results is that both reli-
gious and nonreligious individuals process evidence in a simi-
lar fashion but differ in their priors regarding the possibility
of religious and scientific claims. The possibility that individu-
als may be engaging in Bayesian-style reasoning was not explicitly
studied in the present research and should be followed up explicit-
ly in future research.

Whereas religious participants needing fewer replications to
confirm a religious claim than a scientific claim aligns with the
suggestion of a bias by religious believers to believe religious
claims, our finding that nonreligious participants also needed
fewer replications to confirm a religious claim than a scientific
claim is curious. The comparable analysis reported in McPhe-
tres and Zuckerman (2017) did not reveal such a significant dif-
fERENCE, although the pattern of means was in the same
direction as ours. One interpretation is that because the nonre-
ligious individuals in our study live in a culture that is highly
deferential to and protective of religiosity, particularly Judeo-
Christian denominations, nonreligious individuals maintain a
similar implicit pro-religion bias. Further, nonreligious individ-
uals in our sample may have also previously been religious at
some point in their lives, and explicit conversion to a nonre-
ligious affiliation may not necessarily translate to abandoning
implicit pro-religion biases easily.

Although our findings successfully replicate and extend
prior research, the present study has several limitations that
should be addressed in future research. The evidence we
asked participants about was limited to a single type, either
successful replications or failed replications. By contrast,
claims made in the real world are frequently evaluated based
on both supporting and disconfirming evidence of different
types and qualities, ranging from testimony to systematic
experimentation by multiple independent experts. Addition-
ally, we asked participants to make evaluations about the cer-
tainty of the cause-effect relationship they were presented
with. Future research should ask participants about the prob-
ability of scientific or religious causal claims being true on the
basis of evidence of any sort, as an additional way to explore
how people use evidence when deciding to accept or reject a
claim. This approach could be useful in determining whether,
as noted above, religious and nonreligious individuals treat
evidence similarly but differ in the priors they assign to reli-
gious and nonreligious claims.

Generally, we found that nonreligious individuals are more
skeptical when it comes to believing claims and have a lower
threshold of disconfirming evidence for rejecting claims, par-
ticularly religious claims. Our study also showed that although
religious individuals may be more credulous of religious claims
and more skeptical of scientific claims, they are resistant to
rejecting either kind of claim in the face of disconfirming
evidence. Additional research is needed to understand the epis-
temological commitments of religious and nonreligious indi-
viduals. For instance, because the claims participants
responded to in this study are hypothetical, future research may
explore the treatment of evidence for real-world empirical
claims by scientists and religious leaders. Research by Shtul-
man (2013) found that individuals tend to justify their beliefs
about the existence or nonexistence of scientific and superna-
tural phenomena similarly. The most common type of justifica-
tion participants in his study made was an appeal to an
authority or worldview, with a substantially smaller proportion
of justifications participants made including an explicit refer-
ence to evidence. Additionally, similar research by Lobato and
Zimmerman (2019) found that individuals justified their beliefs
about scientific issues that have become part of the sociopoliti-
cal landscape inconsistently, with only 11% of participants
referencing evidence for their beliefs about all the topics they
were asked about. This suggests that peoples’ epistemological
commitments for the believability of a claim vary from topic to
topic rather than by domain. More research examining how
people set evidentiary standards for specific claims, whether
religious or scientific or some other empirical claim, may help
reveal factors relevant for understanding how people develop
and maintain their beliefs about what is real and what is possi-
bile. For a subset of individuals, it may simply be the case that
extraordinary claims do not actually require extraordinary
evidence.

Declaration of Conflicting Interests
The author(s) declared no potential conflicts of interest with respect to
the research, authorship, and/or publication of this article.

Funding
The author(s) received no financial support for the research, author-
ship, and/or publication of this article.

ORCID iD
Emilio J. C. Lobato https://orcid.org/0000-0002-3066-2932

Supplemental Material
The supplemental material is available in the online version of the
article.

References

rationale of self-validating belief systems. Philosophical Psychol-

Reflective minds and open hearts: Cognitive style and personality
predict religiosity and spiritual thinking in a community sample.

Bruder, M., Hafke, P., Neave, N., Nouripanah, N., & Imhoff, R.
(2013). Measuring individual differences in generic beliefs in

Author Biographies

Emilio J. C. Lobato is a PhD student in Cognitive and Information Sciences at the University of California, Merced. He primarily studies why people accept or reject scientific claims.

Shadab Tabatabaeian is a PhD student in Cognitive and Information Sciences at the University of California, Merced. She primarily studies the relationship between eye movements and successful problem solving.

Morgan Fleming is a PhD student in Cognitive and Information Sciences at the University of California, Merced. He primarily researches distributed cognition and human-computer interaction.

Sven Sulzmann is an MA student in Interdisciplinary Humanities from the University of California, Merced. He is primarily interested in phenomenology and archaeology.

Colin Holbrook is a professor of Cognitive and Information Sciences at the University of California, Merced. His research interests include group prejudice, threat perception, and religious cognition.